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Recently, there have been a number of interesting experiments on the ac response of mesoscopic sys-
tems. An important question in this context concerns the characteristic frequency: at which the conduc-
tance deviates from the dc value. Depending on the system under consideration, this frequency is deter-
mined by the following three parameters: the inverse of the average time an electron spends inside the
device, the thermal frequency, and the inverse of the phase-breaking time. The theoretical work in this
area has been largely based on the scattering formulation, which neglects phase-breaking processes. The
purpose of this paper is to derive a more general formulation that allows us to incorporate phase break-
ing. This formulation is based on the nonequilibrium-Green’s-function formalism and we use double-
energy coordinates, which helps establish the relation to scattering theory. We illustrate the effect of
phase breaking by two simple examples: a one-dimensional resonant-tunneling device with a single reso-
nant level and a resonant-tunneling device with two resonant levels.

I. INTRODUCTION

An important question regarding the ac response of
mesoscopic systems is the characteristic frequency o, at
which the conductance deviates from the dc value. There
are three relevant parameters: the inverse of the time an
average electron spends inside the device (r7!), the in-
verse of the phase-breaking time (74 1), and the thermal
frequency (kp T /#i). How these parameters influence the
characteristic frequency is likely to depend on the system
under consideration. For example, recent experiments on
disordered metallic films' have shown that the weak lo-
calization correction to conductivity is reduced when
o~7, . On the other hand, experiments on gold rings®
show that the A /e Aharonov-Bohm oscillations in the
conductance persist to frequencies in excess of 75 !
(which must be much greater than 74 ! in order for
Aharonov-Bohm oscillations to be visible), leading the
authors to suggest that it might be the thermal frequency
that determines the characteristic frequency.

On the theoretical side, several authors have studied
transient transport in mesoscopic systems.’ !5 Reference
9 provides a formulation for the small-signal conductance
based on scattering theory. It shows that if we apply a
small ac voltage v,. to contact 1 (Fig. 1), then the ac
currents i,, a € 1,2, is given by

o _< Tr[I8, ,—s} (E+%w)sy (E
igl@)=" JdE T1[18, ,—s}, (E+7iw)s g (E)]

fE)—f{E+fiw)

X ,
Y e

(1)

where s is the scattering matrix of the device and f is the
equilibrium Fermi function. Here it is assumed that
there is no ac potential in the conductor itself. The for-
mulation can be extended to remove this assumption. It
is important to note that i, denotes only the conduction
currents at the contacts, which do not sum up to zero.
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Their sum is equal to the time rate of change of charge Q
stored inside the device:

i,+i2=%=ID : (2)

Depending on how the image charge is distributed among
the contacts, the displacement current (I, ) distributes it-
self among the different leads, providing overall current
conservation. '

Equation (1) provides a simple approach for investigat-
ing the ac linear response of phase-coherent mesoscopic
systems. However, this formulation assumes coherent
transport and thus cannot be used to investigate the effect
of phase-breaking processes on the ac response. To eluci-
date this point, we consider a one-dimensional resonant
tunneling diode {Fig. 2(a)]. The transmission coefficient
can be written as s5(E)=V T [L,/[(E—E,)+i([,
-+I',)/2]. From Egq. (1), in the high-temperature limit
(kg T >>fiw and "y +1I',) we obtain

i:iz_J}__flv (3)
2 D +Dy—ifiw” >’

which illustrates the well known fact that the characteris-
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FIG. i. Two-terminal mesoscopic conductor with an ac volt-
age applied to one of the contacts.
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tic frequency of a phase-coherent resonant-tunneling
diode is determined by (I';+T,)/#, which can be
identified with 77 1. Here f'=3f /3E is evaluated at the

resonance energy. However, it is straightforward to see

Contact 1 Contact2
r1<——-— - —f e I"2

[ ~=== with phonons ]
4.8 r (b) !:-without phono;"
—~ 4.0 -
ol 32 y
2
o 24 1
(&
2 I
5 1.6 J
=
g
S 08 -
o
0.0 -
_0.8 M 1 g " L 1 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6
frequency (meV)
2.4 T Ly T T L}
without phonons| |
(C) ’ ® with phononjl
2.0 .
1.6 .
o
@ 12t .
o
c
8
S osf i
k=
c
o
O
04 r .
0.0 1 J
0.0 0.1 0.2 0.3 0.4 0.5 0.6
frequency (meV)
FIG. 2. (a) Plot of a one-level resonant-tunneling device.

€=35.0 meV, I')=I",=0.02 meV, u=4.9 meV, and D=0.12
meV. (b} Real part of the linear response conductance (i, /v,.)
as a function of frequency without (solid) and with (dashed)
phase-breaking scattering for k7=0.004 meV. (c) The real part
of the linear-response conductance (i, /v,.) as a function of fre-
quency without (solid) and with (solid circles) phase-breaking

scattering for kT=6.0 meV.

that we run into difficulty if we attempt to incorporate
phase breaking. It is well known that in the presence of
phase-breaking processes the transmission coefficient is
modified to s, (E)=v'T'\I,/[(E—E,)+i(T+T,
+T'4)/2], where T'y=%/74. A naive application of Eq.
(1) would yield

_e2 I,
2T T A, T i

f'V -

If this were correct, the characteristic frequency would
increase due to phase-breaking processes from
(T'y+T,)/%ito (' +T,+T',) /7. This is, however, clear-
ly wrong. In the high-temperature regime (kg7 >>#w
and I')+T,) the device can be described using a rate
equation based on the sequential model (f'=3f /0E):

=T, —Q), h=STy0, I+i,=2L @

dt

which yields exactly the same expression for current as
the phase-coherent case [Eq. (3)]. Clearly, then, phase-

- breaking processes cannot increase the characteristic fre-

quency of a resonant tunneling device as one might ex-
pect from a naive application of Eq. (1). In this paper we
give a formulation to calculate the ac response of meso-
scopic systems including phase-breaking scattering.
There has been some work*® on including phase-breaking
processes that is based on the Kubo formalism, which
uses the fluctuation-dissipation theorem to relate the
linear-response conductance to the equilibrium noise.
The nonequilibrium-Green’s-function (NEGF) formal-
ism, on the other hand, deals directly with the transport
problem and is applicable even in far-from-equilibrium
situations. Recently Refs. 8, 12, and 16 provided a for-
mulation based on the NEGF formalism. Qur formula-
tion is similar to Refs. 8, 12, and 16, but we use double-
energy coordinates,!” which makes the connection to
scattering theory more transparent. For example,
scattering by a time-dependent potential causes an in-
cident electron at energy E to transmit to a different ener-
gy E'. In the NEGF formalism, this process is described
by a double-energy retarded Green’s function G(E,E’),
which plays the role of the transmission coefficient
t(E,E’). This relationship would be obscured by the use
of the double-time Green’s function. This physical pic-
ture is valid while describing motion of quasiparticles in
any ground state and the concept of two energy argu-
ments has been used in Ref. 18 in the context of super-
¢conductivity. Moreover, the use of double-energy coordi-
nates allows us to incorporate the proper boundary con-
ditions in a form similar to that used in the scattering for-
mulation. As a result, it is easy to show that our formu-
lation reduces to the scattering formulation when phase-
breaking processes are neglected. We illustrate our for-
mulation by applying it to the resonant-tunneling device
discussed above [Fig. 2(a)] and to a resonant-tunneling
device with two energy levels E; and E, [Fig. 3(a)],
which exhibits two peaks in the conductance G(w), one
at ®=0 and the other at 0w=(E,—E)/# [Fig. 3(b)]. In-
terestingly, phase breaking has no effect on the first peak,
but changes the frequency response of the second peak.
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FIG. 3. (a) Plot of a one-dimensional resonant tunneling diode with two resonant levels. The parameters chosen are €, =5 meV,
€, =5.4 meV, I, =T, =T 14, =T34, =T 14, =20 =1X1072 meV, Ty, =5T,,, kT=0.04 meV, and D=0.005 meV. (b) Plot of
the conductance (i, /v,.), in units of e?/h, versus frequency, assuming no phase-breaking scattering. The solid line is plotted with the
chemical potential x=5.0 meV = ¢, and the dotted line is plotted with £=5.1 meV >¢,. (c) Plot of the high-frequency conduc-
tance, in units of e2/h, versus frequency, with (dashed) and without (solid) phase-breaking scattering. Apart from the reduction in
peak height, the width of the frequency response increases due to phase breaking. u=>5 meV =g¢,. (d) Plot of the high-frequency
conductance, in units of e?/k, versus frequency. Here difference in ac conductance with (dashed) and without (solid) phase breaking

is small compared to (c). ©=5.1 meV >¢,.

II. GENERAL FORMULATION

A. Expression for the current

To calculate the conduction current we use the method
initiated by Caroli et al.:'>?%%12 The system initially
consists of an unconnected device region (Hp) and the
contacts (Hc,); the coupling (V,) between the device
and contact ¢ is introduced as a perturbation. The Ham-
iltonian is of the form

H(t)=Hp(t)+ 3 Helt)+HVe (1) .

a& contacts

Both electron-electron and electron-phonon interactions

in the device can be included in Hj, the Hamiltonian of
the device region. The chemical potential and externally
applied time-dependent voltages in the contacts are as-
sumed to be known exactly. The fact that the rate of
change of electron density [Q(t)=eN(#)] in the device
equals the sum of conduction currents through all the
contacts can be used to derive an expression for the con-
duction current:

aoit) _ e —§ JC jCc—__€
dr l_ﬁ[N,H]_ %J,,, N ,-ﬁ[N’VCa]-' (5)

Equation (5) is obtained by noting that the commutator
bracket [N, H]_=3I_,[N,Vc,]-- This is because the
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terms H¢ and Hp cannot change the number of electrons
in the device. To evaluate the right-hand side of Eq. (5)
we work in the tight-binding representation and assume
the following forms for V¢, and H,:

HCazz eia,ia(t)¢ia(t)¢ia(t)

+ 3 tig e WO (D) Feoc. (6)
i#=j

ca=2 Viax(OWl{0)d, +c.c.

Here ¥,,(t) [1/1,a(t ] refer to electron creation [annlhlla-
tion] operators including spin at site i of contact a. d (2)
[d,(2)] are creation [annihilation] operators including
spin at site x of the uncoupled device region. Applying a
sinusoidal potential v,.cos{w?) to contact a causes the
site  energies in contact « to vary as
€tV =€;,T v cos(wt). The matrix element connecting
the contact to the device, V;, x(t) is now time dependent.
Making use of the fact N(£)=3 ;¢ device? T(t)dx(t), we
have, from Eq. (5),

t)=2 Via,x(t)foia(t’t)—
Lx

where Gl (1, )=i{ Yl (0)d, (1)), G,;x(t t)
=i{d](;()}, and G;,a(z t)— —1{thsql 1)dl(z)) are
the usual Green’s functions appearing in the NEGF for-
mulation.?’?> The Green’s function appearing on the
right-hand side of Eq. (7) connects the device and the
contacts. However, the real value of this method initiat-
ed by Caroli et al. lies in the fact that the current can be
expressed in terms of the unperturbed Green’s function in
the contacts and the full Green’s functions only in the de-
vice region. The following important relations derived in
Refs. 8 and 20 help express the current in this form:

Glultt)= 3 [TTan vy )

x'€ device ®

Vifx,x(t)Gi:,x(t:t) » (7)

X[G;,x'(t,tl )Ggfm(l‘l,t)
+Gx<,x'(t’t )Gx(:?ta(tl’t)] )
8)

Gtgx(t 1= 2 f+wdt Vza:x( ty)

x"&€ device

X[Gyialt,81)G 3 (21,8)
+G1(31<za(tt )Ga (tlr )]

Lw=% [ [+ 0P

—w 27 2T
—3E +#w,E

Tr[GNE +#w,E )25 (E,E

JGUE,E)

where G, (t,t),

turbed Green’s functlons
and the relationship G'(¢,2,)—
e <(tl,[2),21
as

k€r, and a, >, < are the unper-
23 in contact a. Using Egs. (8)
GUt1,15)=G > (t,1,)
the expression for current can be written

Ia(t)=%f_t_wdt1Tr[2;(t,t1 )G > (1,,1)

—Eg(t,ti)G<(t1,t)+c.c.] ’ (9)

where

zt};,x,x’(tl? t2

2 tax tax(t2)Gta,za(t1’t2) (10)

is the self-energy due to contact « and y € and a, >, <.
Equation (9) has the meaning that the current in contact
a is the electron in-scattering function due to contact a
(=5) times the hole correlation function in the device
(G”) minus the hole in-scattering function due to con-
tact a (27 ) times the electron correlation function in the
device (G <)?* A similar equation for the time-
dependent current was obtained in Refs. 8 and 12 [Eq.
(5.1) of Ref. 8 and Eq. (1) of Ref. 12]. Tr denotes trace
over the spaptial coordinates, for example,

Tr[Z5(2,81)G 7 (£,1)]

=2x,x’e devicezix,x'(t’tl )Gx?,x(tl’t) .

One could of course transform from the position repre-
sentation to other representations such as the eigenstate
representation. In general, we will not use any represen-
tation explicitly and simply treat the quantities £ and G
as matrices in some suitable representation. Equation (9)
can be viewed as a generalized rate equation that allows
us to handle nonlocal (in space and time) injection pro-
cesses. Indeed if the functions =5 and 3> are both diag-
onal and local [Z7;<(t;,t6,)~0o % (tl )8, 821 — 1511,
then Eq. (9) reduces to a simple rate equation

I,(2) ——anmm(t)G,,Tm(t) o mm (E)Gn (2)

Note that the diagonal elements of G < and G~ are pro-
portional to the electron density and the hole density, re-
spectively. In discussing the response to a sinusoidal
driving signal, we find it convenient to transform the
two-time coordinates to energy!’ and rewrite Eq. (9) in
the form

)+G <(E +#w,E|)SYE,E)

—3(E +%w,E|)G <(E,E)] . (11)

The advanced and retarded Green’s and self-energy functions appearing in Eq. (6) are defined in the usual manner.?
The equation is valid in general, i.e., in the presence of strong electron-electron interaction and strong electron-phonon
interaction. The transformation from the time coordinates to energy coordinates follows the usual prescription,

F(EI,E2)=f dtzF(tl,tz Yexp[ —i(E,t,

dtlf

For simplicity, we use the same symbols to denote the transformed functions.
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B. Green’s functions

To calculate the current, Eq. (11) has to be coupled with equations for the Green’s functions G"and G > < V7
-

de

dE
EIG"(rl,rZ;El,Ez)—fE—;H(rl,e)Gr(rl,rZ;El-—e,Ez)—fdr3

dE,

G(E,E=[""—> 9k 3

where H is the Hamiltonian describing the conductor.
The self-energy components appearing in Egs. (12) and
(13) are obtained by summing the components arising
from the contacts [which appear in Eq. (11)] together
with the components arising from electron-electron or
electron-phonon interactions:

E>’<’Y(E1,E2 22> < ’EI,E2)+E> < r(El,Ez) .

(14)

Before we proceed we note that while Eq. (11) is applica-
ble in general, Eqgs. (12)-(14) can be used only when the
system can be described by perturbation theory. For
strongly interacting systems (e.g., Coulomb blockaded de-
vices), the Green’s functions have to be evaluated using
nonperturbative techniques.®

C. Self-energy functions

One advantage of the energy representation is that it
allows us to write down the in-scattering terms from the
contacts in a simple form. Under steady-state conditions,
these functions are purely diagonal in energy and Eq. (10}
gives

—iZS(E,E")=TE)f (E)S(E—E'),
+iZ2(E,E")=TE)[1—fE)S8E—E"),
E;(E,E’)=—l[I‘;(E)+i1“ (E)IS(E—E"),
Taor EV=27 3 Vi Vsl E)

(15)

where the matrix I' ,(E) describes the coupling of contact
a to the conductor, while I',(E) is the Hilbert transform
of T(E). pllE)=—(1/m)GY (E) is the density of
states at site i of contact . The presence of a sinusoidal
voltage of frequency w in contact « introduces a correla-
tion between energies’* E and E +n#o so that the in-
scattering function due to contact a, X (E+niw,E),
develops off-diagonal components in energy. Physically
one can see that the ac in-scattering function from con-
tact @, 25 (E +nfiw,E), arises because electrons at ener-
gy E—mo, with a Fermi function f,(E —muw), develops
a sideband at energy E with a weighting factor
J.lev, /fiw) and a subband at energy E +nfiw with a
weighting factor J, ., (ev,. /#®m). Then, neglecting the
time dependence in the coupling between contact o and
the device,

21: 2’(r1,r3;El,E3)G'(ra,rz;Es,Ez)

=6(r1_r2)8(E1_‘E2) ’ (12)

- G'(E,E3)E (5, Eq)G"EQEy) , (13)

I
—~i3S(E +nw,E)

J v ac J euac
2 ntm ﬁa) m ﬁa)
XTE—mtio)f (E—mfio), (16)
+iZ(E +ntio,E)
— euac evac
“%J’”m fiw fiw
XTAE~m#w){1—f (E—mfiw)], an
S/(E +n#iw,E)
_ ev,. ev,, 1
T2 nam |y lj'" fio 2
X[CAE—mbtio)+il (E—mfio)], (18)

where T'(E) and I')(E) are defined in Eq. (15). The ex-
pressions for the self-energy components due to phase-
breaking interactions depend on the nature of the interac-
tions and the approximations used. For electron-phonon
interactions in the self-consistent born approximation,?

2;’<(r,,r2;E,E’)

d(ﬁ
= [—2- ) >, <(#0,)G> <(E—#Q,,E'—#Q,) .

(19)

The function D ”*< is the Green’s function for the pho-
non bath, which is assumed to be in equilibrium. If the
phonon eigenstates are simple plane waves, we can write

D(ry,ry;%0,)

=3 U, [l """ TN, 80, — Q)
q9

+iglry—ry)

+e (N, +1)8(#i, +#0,)] ,

(20)

where N, is the number of phonons with wave vector g
and frequency o, and U, is the potential “felt” by an
electron due to a single phonon with wave vector gq.
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Equations (11)—(18) can be used to calculate the
response of mesoscopic systems for arbitrary ac excita~
tions. However, Egs. (12)—(14) can be used only when
the system can be described by perturbation theory and
Eq. (19) is an expression for self-energy in the self-
consistent Born approximation.”> We will now specialize
to the small-signal response and assume that v, is small.

III. SMALL-SIGNAL RESPONSE

A. Current expression

In this section we assume relatively featureless con-
tacts, that is,

SAE)=Z2(E+#w)=—iT, /2. (21)

This is often referred to as the wideband limit.2! For
small ac voltages, we can linearize Eq. (11) about the
steady state to write

folo)=2 [ LE (i) By0)+i1 2B, 0)
+i3NE,0)], (22)
where
iNE,0)=0;\E+%0,E)G"E +#n)—GYE)],

iNE,0)=iT g “(E+#0,E),
iNE,0)=g"(E+#0,E)X(E)
—~gUE+#w,E)E;(E +#o) .

We have used g and o to denote the small-signal com-
ponents of G and Z, respectively. From here on we will
use G and = to denote the steady-state quantities and not
the total time-varying function as we have been doing so
far. Since these are nonzero only if E=E', we will write
G and T with only one energy argument.

We have grouped the terms in Eq. (22) into three
categories because each group has a different physical
significance. The effect of oscillating a contact at fre-
quency o results in the following. Every energy E in the
contact is now associated with sidebands at energies
E +n#ew, where n is an integer. Correlated injection into
the device due to electrons at energies E and E +nfio
should be taken into account (first term). (ii) The electron
density in the device changes with time. This causes
correlated injection (at energies E and E +n#ow) from the
device to the contact (second term). Note that the ac
charge density in the device 1is given by
Q(w)=—ie [ dE Tr[g *(E +#w,E)]. (i)} As a result of
the changing potential in the device region, the density of
states in the device is affected and the third term
represents injection from the contact at one energy to a
changing density of states in the device.

B. Green’s functions
Linearizing Eqgs. (12) and (13) we obtain
g (E +1io,E)=G"(E+fiw)o(E +7w,E)GYE) , (23)

7637
“(E+#iw,E)=G"(E +#w)o “(E+#w,E)GE)
+g"(E+#0,E)2<(E)G4E)
+G"E +#w)E<(E+%#w)g“E +#w,E) .
| (24)
C. Self-energy functions
For small ac voltages Eq. (17) reduces to
_ ev
"—iO’;(E‘f‘ﬁw,E):Faf(E) f(E+ﬁa)) ac
Fico 2
=—jo (E+#n,E) (25)

for n=1, while the ns%1 components can be neglected.
Equation (19) can be written as

d(hﬂp) >,<
oD,

Xg> <(E—#Q,,E'

U;’<(r1,r2;E,E')=f
—#%Q,) . (26)

Equations (22)-(26) can be used to describe the small-
signal ac response including phase-breaking processes.
While Egs. (22) and (25) are applicable in general in the
wideband limit of the contacts, Eqgs. (23) and (24) can be
used only when the system can be described by perturba-
tion theory. Equation (26) is valid only in the self-
consistent Born approximation. 2

IV. CONNECTION TO SCATTERING THEORY

To make connection to the scattering theory result
[Eq. (1) of this paper],” we assume a phase-coherent de-
vice with no ac potential inside the conductor, as dis-
cussed in Ref. 9, and apply the small-signal ac voltage to
contact 1. Then (a) g"=0 and the last term of Eq. (22) is
identically zero and (b) o <(k,E 4w, E) has contributions
only due to in scattering [Eq. (26)] from contact 1.
Equation (24) then reduces to g (E+wo,E)
=G@E+w)o(k,E+o,E)GE). Using these equa-
tions in Eq. (22), the small signal ac current is given by

2
ia(co)=§—hde Tr[i{G"(E +#w)—GYE)}T 8,

—T',G"(E +4#w)T",GYE)]
FIE)— FIE +#w)

ac ﬁa)

The scattering matrix of the device is related to the
Green’s function in the device by the relationship
s(E)=—I+il''"?G"E)T""/2? 1t then follows that

(18, —s] (E+#0w)s 4 (E)]
=Tr[i {G"(E +#0)—GYE)}T S,
—T,G"(E—#%»)T ,GYE)] . (28)

Xv

27)

Making use of Eq. (27), Eq. (28) reduces to the scattering
theory result [Eq. (1)].
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V. SIMPLE EXAMPLES 2I0,
z'z(co)=—-—ﬁ~Q(co)
We now illustrate the above formulation using two where
simple examples, including the effect of phase breaking.
(i) The first is a one-dimensional resonant-tunneling diode Qlw)=e f te L;E[ —ig <(E+%0,E)] .
—_ 0 17'

[Fig. 2(a)] described by just one point in space as dis-
cussed in the Introduction. Here we show that the con-
ductance versus frequency at low temperatures
[kpT <(I'+T,)] is modified by phase breaking, but on
increasing the temperature [kp T >>(T";+1T',)], the con-
ductance is unaffected by phase breaking as discussed in
the Introduction. (ii) The second is a one-dimensional
resonant-tunneling diode with two energy levels [Fig.
3(b)]; here the cutoff frequency is affected by phase break-
ing. We restrict the calculation to the high-temperature
limit [kzT>>(T";+1I,)]. In these examples we will as-
sume that there is no ac potential inside the conductor.
The point interaction for the electron-phonon interaction
Hamiltonian is used, H, ,=3, ., U(q)d,‘:,d,,[bq-i-b;],
where m and n represent single-particle states of the de-
vice and ¢ represents the phonon modes. Ulq) is the
strength of the interaction.

A. Example 1

We consider a one-dimensional resonant-tunneling
diode with a single resonant level [Fig. 2(a)]. The ac con-
ductance of a resonant-tunneling structure has been cal-
culated previously in Refs. 4, 5, 7, 10, 11, and 15 in the
phase-coherent limit only. These references, when ap-
plied to the particular example under consideration,
would give essentially the same answers as ours only in
the phase-coherent limit. Here we calculate the ac con-
ductance in both the presence and the absence of phase
breaking. The Green’s function for this system in dc is
given by G(E)=1/[E—e—2%E)+i(T,+T,)]. We
then use Eqs. (22)-(26) to calculate the linear-response
current by retaining only the imaginary parts of the self-
energy (25 and o) corrections due to phonons. The pho-
non Green’s function D({)) is assumed to be relatively
featureless and for the plots in Fig. 2 D(Q)=3(I";+T,)
=0.12 meV.

Figure 2(b) is a plot of the low-temperature ac conduc-
tance as a function of frequency. As the Fermi level has
been taken to lie below the resonant energy, the ac con-
ductance initially rises due to the increasing density of
states above the chemical potential and then eventually
decreases. When phase breaking is included, the peak
conductance decreases, but the conductance increases at
higher frequencies when compared to the phase-coherent
case [Fig. 2(b)]. This can be understood by noting that in
the presence of phase breaking, (i) the density of states
decreases at resonance and increases away from the reso-
nance, except at the Fermi energy at very low tempera-
tures (kT <<T'), and (ii) the ac self-energy due to pho-
nons, 0 ;5 (E +w,E), is small for large o.

In the high-temperature limit, the in scattering due to
phonons at a given energy is nearly equal to the out
scattering at the same energy. Then, 0"=0 and from Eq.
(23), g"~0. Asaresult, i (E,0)=0. From Egs. (22),

The factor of 2 in the expression for i, accounts for spin
degeneracy. Also, we assume that the phonon function D
is nearly constant in the energy range of interest; we can
then write, from Eq. (26),

0§ (E+#w,E)=D [ " “dE[—ig “(E+#0,E)]
=T ,0(w)/e 29)

since 27D =F¢.26 Noting that the Green’s function is
given by GE)=1/[(E—E,)+i(I';+I,+I4)/2] and
using Eqs. (23), (24), and (29), we obtain

e, ., T, ry0(w)
Olw)= f - : ;
2 ) T 4T, 4T, — it | T+ T, +T,—ifio
(30)
so that
. e? , rr,
T Ve T AT, — it

which is exactly the same result obtained for coherent
transport [see Eq. (3)], thus showing that phase-breaking
processes do not have a significant effect on current in the
high-temperature limit [Fig. 2(c)].

B. Example 2

We now consider a resonant-tunneling device with two
resonant energy levels €, and €, [Fig. 2(b)] such that
TaorTpp <<kT <<€,—¢, so that f(e,) <1 and f(e,)~0.
The coupling to the contacts is represented by I',, T,
Ty, Tyy and T =T, +T,,,, where x&a,b. The
linear-response current vs frequency of such a structure is
peaked around #w~0 and fiw~e€, —¢, [Fig. 3(b)]. The
high-frequency peak exists because an electron incident
in contact 1 at energy €, has a sideband at energy €, and
the transmission through the device is peaked at both
these energies. On raising the Fermi energy, the low-
frequency peak diminishes because occupancy of the
lower level approaches unity and the electron density
cannot change significantly [Fig. 3(b)]. As in the previous
example, the low-frequency conductance peak is un-
changed due to phonon scattering and here we will be
concerned with the high-frequency conductance peak.
The formalism in Refs. 4, 5, 7, 10, 11, and 13, which
study phase-coherent transport, would have given the
same results when applied to this problem only in the
phase-coherent limit. Here we study the effect of phonon
scattering on the high-frequency peak [Fig. 3(c)]. The
dominant scattering mechanism is assumed to be due to
phonons of energy ~¢,—¢,. For w~¢,—¢,, from Eq.
(26), the self-energy due to phonon scaitering
04’ “(E +fw,E)~0. This implies o 4(E +%w,E)~0 and
from Eq. (23), g"~0. It then follows from Egs. (22) that
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(@)= — ar 0, () The factor of 2 in the expression for i, accounts for spin
htae 7 <ha\® degeneracy. Noting that the Green’s functions are given
whore by GL(E)=1/[(E—E,)+i(Ty + Ty + Ty ) /2],
where x €a,b, and I'y, =0 and I'y, =D /2(1—f,), where
—, [T=dE . _ . . [, is the Fermi function at energy ¢,, it follows from Egs.

Qpa(@)=e —w 21T [—igsa(E+1ieo, E)] . (23), (24), and (29) that the current is given by

|
. . 2ab _ I‘lba I-‘Zab

@) # Qs (@) I a0 T T +r¢b ’ Gy

) —i(fiw—A)

where A=¢, —¢€,. From this expression, it is clear that phonon scattering has two effects on the frequency response
[Fig. 3(c)] of the high-frequency conductance peak: (i) the peak height reduces and (i) the width of the frequency
response now increases from (I'yp, + T, T30, T 245 )/2 10 (Tyq + g + T g0 + T4 + T4, ) /2. The peak height de-
creases because the component of the electronic wave function at energy ~e¢, can scatter down to energy ~¢€,, due to
phonon scattering, thus reducing the magnitude of the correlation function Q;,.>” As a result of phonon scattering, the
density of states [(1/7)Im{G"}] increases away from the resonance at energy €,. This causes the correlation function
at nonresonant energies to increase.”’ As the Fermi energy increases, the leakage rate of the electron wave function
from energy €, to €, becomes smaller and the high-frequency peak with phonon scattering approaches the phase-
coherent value [compare Figs. 3(c) and 3(d)].

VI. CONCLUDING REMARKS

We have presented a general formulation based on the NEGF formalism that allows us to describe the ac response of
mesoscopic systems including arbitrary amounts of phase-breaking and dissipative processes. In the case of a phase-
coherent device, we show that our equation for current reduces to the linear-response result derived in Ref. 9. The for-
mulation is illustrated by two simple examples: (i) a one-dimensional resonant-tunneling device with a single level,
where the small-signal current is affected by phonon scattering at low temperatures, but is not affected in the high-
temperature limit, and (ii) a resonant-tunneling device with two levels where the small-signal current is affected by pho-
non scattering.
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